Unsupervised multicomponent image segmentation combining a vectorial HMC model and ICA
نویسندگان
چکیده
This work extents the Hidden Markov Chain (HMC) model for the unsupervised segmentation of multicomponent images. Although the vectorial extension of the model is almost straightforward, we are faced to the problem of estimating a mixture of non-Gaussian multidimensional densities. In this work, we adopt an Independent Component Analysis (ICA) approach that allows the mutual dependance between the layers to be taken into account in the segmentation process. Classification results on a four bands SPOT-IV image illustrates the method. Also, a comparison is performed when only mutual independence or correlation between the components is assumed.
منابع مشابه
Unsupervised Texture Image Segmentation Using MRFEM Framework
Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...
متن کاملUnsupervised Texture Image Segmentation Using MRFEM Framework
Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...
متن کاملUnsupervised Change Detection in Sar Images Using a Multicomponent Hmc Model
In this work, we propose to use the Hidden Markov Chain (HMC) model for fully automatic change detection in a temporal set of Synthetic Aperture Radar (SAR) images. First, it is shown that this model can be used as an alternative to the Hidden Markov Random Field (HMRF) model in the image differencing context. We then propose a novel approach, called joint characterization, whose principle is t...
متن کاملMultiscale Oil Slick Segmentation with Markov Chain Model
A Markov chain model is applied for the segmentation of oil slicks acquired by SAR sensors. Actually, oil slicks have specific impact on ocean wave spectra. Initial wave spectra may be characterized by three kinds of waves, big, medium and small, which correspond physically to gravity and gravitycapillary waves. The increase of viscosity due to the presence of oil damps gravity-capillary waves....
متن کاملExtension of higher-order HMC modeling with application to image segmentation
In this work, we propose to improve the neighboring relationship ability of the Hidden Markov Chain (HMC) model, by extending the memory lengthes of both the Markov chain process and the data-driven densities arising in the model. The new model is able to learn more complex noise structures, with respect to the configuration of several previous states and observations. Model parameters estimati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003